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Abstract: The infrared optical properties of textiles are of great importance in numerous 
applications, including infrared therapy and body thermoregulation. Tuning the spectral 
response of fabrics by engineering of composite textile materials can produce fabrics targeted 
for use in these applications. We present spectroscopic data for engineered polyester fabric 
containing varying amounts of ceramic microparticles within the fiber core and report a 
spectrally-dependent shift in infrared reflectance, transmittance and absorptance. A thermal 
transport model is subsequently implemented to study the effect of these modified properties 
on the spectral distribution of infrared radiation incident upon the wearer of a garment 
constructed of this fabric.    
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1. Introduction 
The engineering of textiles to exhibit desired optical properties has long been explored, with 
success demonstrated in various methods including: co-spinning of different materials, 



introduction of gradients in fiber cross-sectional shape, inclusion of inorganic content, or use 
of dyes and other additives [1,2]. Recently, increased attention has been paid to the 
interactions between textile products and infrared radiation, due to the potential impact in 
applications ranging from body cooling to industrial drying processes to infrared therapy [3–
6]. Mid-infrared optical properties are of particular importance when considering interactions 
with the human body, as at nominal skin temperature much of the body’s emissive radiative 
power is centered in the mid-infrared between 7 and 14 µm, and infrared heat losses account 
for approximately 50% of body cooling in typical indoor conditions [7,8].  

In the work presented herein, we utilized Fourier transform infrared (FTIR) spectroscopy 
to assess the spectral optical properties – namely the near-normal reflectance, transmittance, 
and emittance – of textile fabrics knitted with varying percentages of ceramic-bearing 
polymeric fibers. The biological effects of garments manufactured from these fabrics are 
presently under investigation [6]. The fabrics, which we also studied in our previous work [3], 
were nominally identical in thickness, basis weight, knit structure, and color. All fabrics 
consisted of 8% elastane fibers and 92% polyethylene terephthalate (PET, i.e., polyester) 
based fibers; the only difference between the samples was the fraction of these fibers that 
contained a core of polyester blended with ceramic particles (e.g., titanium dioxide) for 
optical property modification. 

The measured optical properties were subsequently utilized in a first-principle-based heat 
transfer model, accounting for emitted, reflected and transmitted radiant energy as well as 
thermal transport via conduction and convection, to determine the magnitude and spectral 
distribution of infrared energy received by a wearer of each fabric in the 0.8 – 16.7 µm 
spectral region. It is demonstrated that with increasing added ceramic content, the modified 
textile fabrics reflect and transmit less infrared energy and thus absorb more. This is 
particularly evident at wavelengths shorter than 6 µm. As a result, the modified fabrics with 
added ceramic content can absorb incoming radiation from the sun in the near-IR region, and 
emit increased levels of infrared energy at longer wavelengths, as compared to the same 
fabric without ceramic content. Thermal modeling indicates that this effect persists over a 
broad range of environmental and fit factors; such a fabric could be utilized when the physical 
properties of a polyester blend warrant its selection over alternative fabric materials, yet 
modified near- and mid-infrared optical properties are desired.    

2. Experimental Methods 
A Nicolet iS50 FTIR spectrometer (Thermo-Fisher Scientific) was used to measure the 
spectral reflectance (ȡȜ) and transmittance (ʏȜ) of the fabric samples with differing 
percentages of ceramic-bearing fibers. Because of the diffuse nature of reflection and 
transmission from composite surfaces [9], a mid-IR IntegratIRTM integrating sphere (Pike 
Technologies) with a reflective gold inner coating and a deuterated triglycine sulfate detector 
was used to measure the reflected or transmitted infrared radiation from the fabric samples. 
Mid-IR measurements were conducted across a wavenumber range of 4000 – 600 cm-1 
(corresponding to wavelengths, Ȝ, ranging from 2.5 – 16.7 µm), using a potassium bromide 
(KBr) beam splitter. Near-IR measurements, ranging from wavenumbers of 12000 – 4000 cm-

1 (0.8 < Ȝ < 2.5 µm) were conducted using a near-IR Nicolet iS50 NIR integrating sphere 
module (Thermo-Fisher Scientific) with an indium gallium arsenide detector.  

A schematic of the FTIR setup, indicating the sample placement relative to the IR source 
and detector for the various reflectance and transmittance measurements is shown in Fig. 1.  
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Equations (8) - (10) are circularly defined with dependence upon one another. They are 
made independent by substituting Eq. (10) into Eq. (9) and solving explicitly for jsf (Ȝ): 

 
, ,

,

( (, ) , (
(

) )
)

1
skin skin fskin b fab b fab

sf
ab af

skin fab

E jE T
j

Tλ λ

λ

ε λ ρ ε λ τ λ
λ

ρ ρ
ª º⋅ ⋅ ⋅ ⋅¬

− ⋅
+ +

= ¼   (11) 

An iterative solution procedure can be used to solve for the required fabric temperature to 
satisfy the energy balance given in Eq. (6). The specific heat transfer correlations used to 
determine the effective heat transfer coefficients in determining the non-radiative heat 
transfer components Qi and Qo, as well as the procedure for adjusting the epidermis skin 
temperature based on the external heat transfer rate, can be found in the Appendix.  

4.2 Spectral shift in incident infrared radiation to the body 

Of interest for therapeutic applications is the magnitude and spectral distribution of radiation 
received by the body as a result of wearing a fabric, namely jfs (Ȝ) given by Eq. (10). A 
common set of baseline input parameters, provided in Table 2, are used in the thermal model. 
The fabric gap, ambient temperature, air velocity and solar incidence angle can all be adjusted 
in the model to evaluate sensitivity to these environmental and fit factors.   

Table 2. Thermal model simulation parameters 

Property Value Notes 
dermis temp (Tderm)  35°C regulated by vasoconstriction/vasodilation [12] 
skin emittance (İskin)  0.98 greybody, opaque (ȡskin = 1 – İskin) [10] 
height (a) 0.3 m estimate of torso dimensions [12] 
width (w) 0.3 m estimate of torso dimensions [12] 
fabric gap (b) 5 mm adjustable parameter 
ambient temp (Tamb) 23°C adjustable parameter 
air velocity (v) 1 m/s  adjustable parameter 
solar angle (ߠ௦) 45° adjustable parameter 

 
Under the baseline conditions of Table 2, Fig. 7 shows the resulting spectral distribution 

of infrared radiation incident on the skin jfs (Ȝ) for the fabrics with the maximum (1.18 wt. %) 
and minimum (0 wt. %) added ceramic content.  

 
Fig. 7.  Comparison of spectral distribution of infrared radiation received by the skin in the 
near-IR (left) and mid-IR (right) regions for the maximum (1.18 wt. %) and minimum (0 wt. 
%) added ceramic content fabric. 



In the near-IR spectrum, the body will receive more infrared when wearing a garment 
composed of fabric with no added ceramic, due to the higher transmittance in this spectral 
region relative to the fabric with added ceramic. In contrast, the fabric with 1.18 wt. % added 
ceramic is able to absorb more of this solar near-IR radiation which is then re-emitted by the 
fabric at longer wavelengths. This shift in spectral incident radiation can be seen in the mid-
IR portion of Fig. 7, where there is an increase in jfs for wavelengths greater than 4 µm.  

To determine if the increase in incident mid-IR radiation persists over a variety of 
environmental and fit factors, the model was run at different skin-fabric gap distances, 
ambient temperatures, wind speeds, and incident solar angles. The results of these 
simulations, used to calculate the total incident radiation in the mid-IR spectrum from 2.5 – 
16.7 µm by integrating over this wavelength region for both the 0 wt. % and 1.18 wt. % 
added ceramic fabrics, are reported in Table 3. For the baseline case, all model input 
parameters match those listed in Table 2. For the other cases, only the parameter noted is 
changed from the baseline; the other parameters are held at the baseline state.  

Table 3. Infrared radiation (2.5 – 16.7 µm) received by skin under various environmental and fit conditions 

    Mid-IR Power [mW/cm2] 

 Parameter Value 0 wt. % 1.18 wt. % ѐ 
——— baseline ——— 30.7 32.6 1.9 

fabric gap (b) 10 mm 30.3 32.5 2.2 
1.0 mm 31.8 32.8 1.0 

ambient temp (Tamb) 
30 °C 32.4 34.4 2.1 
10 °C 27.7 29.4 1.8 

air velocity (v) 3.0 m/s 30.1 31.6 1.5 
0.1 m/s 31.3 33.6 2.4 

solar angle (ߠ௦) 
70° 30.4 31.3 0.9 
20° 30.8 33.4 2.6 

 

Table 3 illustrates that the spectral shift in incident radiation to the wearer of a ceramic-
embedded garment to the mid-IR region is present under a variety of scenarios. The incidence 
angle of solar irradiation appears to have the most significant effect on the magnitude of the 
shift; a similar effect to a less-normal incidence angle would be expected for cloudy days 
where the intensity of solar irradiation is reduced.  

Increased solar absorption and subsequent re-emission of energy at longer wavelengths 
may be beneficial in numerous textile applications. The impacts of infrared radiation 
consisting of wavelengths ranging from 3 – 12 µm on tissue oxygenation and cell stimulation 
are under investigation [6]. Additionally, performance thermal outerwear designed for cold-
weather applications could benefit from additional absorption from the solar spectrum to 
warm the outer surface of the garment and provide this heat to the wearer of the garment. 
Experimental studies of such ceramic-modified garments incorporating the use of thermal 
manikins or similar techniques should be conducted to assess these potential applications. 

In summary, this study employed spectrophotometric measurements of textile fabrics 
modified with ceramic particles, finding favorable agreement with prior measurements using 
a scientific grade infrared camera on such fabrics. The increase in absorptance and emittance 
was mainly found to be focused in wavelengths below 6 µm, below the typical wavelength of 
human body radiation. However, in applications where the fabric receives radiation in this 
near-IR spectral region (e.g., via sunlight), thermal modeling indicates that the wearer will 
receive increased infrared radiation at wavelengths in the mid-IR (2.5 – 16.7 µm) portion of 
the electromagnetic spectrum, encompassing the wavelengths of human body radiation.   
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Appendix 

A.1 Mathematical relationship to determine reflectance through the indirect method  

Equation (1) shows the mathematical relationship between the spectral reflectivity with (ȡƍȜ) 
and without (ȡȜ) a reflective backing (cf. Fig. 1). This relationship can be derived by 
considering the additional radiation reflected by the sample when a highly reflective backing 
is present, as shown in Fig. A-1.  

 
Fig. A-1.  Reflection from a semi-transparent sample with reflective backing.  

From Fig. A-1, it can readily be seen that:  

 2 21 ...λ λ λ λ λρ ρ τ ρ ρª º= + + + +¬′ ¼    (A.1) 

Because the reflectivity must be less than 1, each term inside the brackets moving 
rightward becomes increasingly smaller, and Eq. (A.1) can be rewritten as: 
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2 1 j

j
λ λ λ λρ ρ τ ρ∞

=ª º= + + ¦¬′ ¼    (A.2) 

A.2 Heat transfer correlations for non-radiative thermal transport coefficients  

The general form of the convection heat flux (units, W/m2) from a surface to its surrounding 
medium is given by Newton’s law of cooling: 

 ( )surface surroundingsQ h T T= ⋅ −     (A.3) 

where h is the average convective heat transfer coefficient, which is a function of the 
geometry and external flow characteristics [10]. Dimensionless variables describing the flow 
and geometry, such as the Reynolds number (ReL) and/or Grashof number (GrL) are first 
calculated to understand the characteristics of the heat and momentum transfer, and along 
with the fluid’s Prandtl number (Pr) these values are used to calculate an average 
dimensionless heat transfer coefficient (.Nu.=.f.(ReL,.GrL,.Pr).). The dimensional average heat 



transfer coefficient h  is then the Nusselt number multiplied by the characteristic length (Lc) 
divided by the fluid thermal conductivity ( )c fluidh L kNu= ⋅ [10,11].  

In certain geometries, such as the gap between two parallel plates at different 
temperatures (i.e., between the skin and fabric), Eq. (A.3) can be employed regardless of 
whether conduction or convection is the dominant mode of heat transfer. If dimensionless 
analysis indicates that viscous dissipation forces outweigh the buoyancy forces generated by 
local differences in fluid density, conduction will prevail over convection and the Nusselt 
number will become unity (when 1 /c fluidNu kh L= ⋅= , it follows that /fluid ckh L= , where 
the characteristic length Lc is the width of the gap between the plates). It can readily be seen 
that in this scenario, Eq. (A.3) becomes /fluid ch T LQ k T⋅ ∆ = ∆= ⋅  which is simply Fourier’s 
law for steady-state one-dimensional conduction through a solid of uniform thermal 
conductivity.  

A.2.1 Outer convection heat transfer coefficient 

Convective heat transfer from the fabric to the ambient surroundings can occur by forced 
convection (resulting from external flow, such as wind, with a “free stream” velocity u�), free 
convection (driven by local buoyancy differences induced by a temperature gradient), or a 
combination of both. To determine which of these (or both) is significant; the Reynolds and 
Grashof numbers must be calculated [10,11]. 
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where ȡ is the fluid density, Lc is the characteristic length (in this case, the width of the plate 
w in Table 2), ȝ is the dynamic viscosity of the fluid, g is acceleration due to gravity, ȕ is the 
coefficient of thermal expansion (reciprocal of absolute temperature for an ideal gas), and Ȟ is 
the kinematic viscosity (Ȟ=ȝ/ȡ). All fluid properties are evaluated at the “film temperature,” 
or the average of the fabric and ambient temperature. Three scenarios are possible and must 
be considered in estimating the average convective heat transfer coefficient: 

1. The wind velocity u� is sufficiently high for forced convection to dominate natural 
(free) convection. This is the case when GrL⁄ReL

�ا 2 1.  If GrL⁄ReL
2 ൏� ͲǤ1, the average 

Nusselt number should be calculated based on forced convection correlations.  If the 
Reynolds number is less than the critical Reynolds number of Recrit = 5.5×105, the 
flow is laminar and Eq. (A.6) applies. If not, the flow is turbulent and Eq. (A.7) is 
used [11].  
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2. In cases where the wind velocity is low, natural convection may dominate forced 
convection (GrL⁄ReL

Ǥ1). If GrL⁄ReLب 2
2 � 10, the dimensionless Rayleigh number 

(RaL = GrL·Pr) must be calculated and used to determine the average Nusselt 



number from natural convection correlations. The Rayleigh number is first used to 
calculate both the laminar and turbulent Nusselt numbers [11]. 
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where Clam and Cturb,V  are dimensionless parameters given by:  
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The average Nusselt number can then be determined by asymptotically averaging the 
laminar and turbulent Nusselt numbers through the following empirical formula: 

 ( ) ( )
1/66 6

, ,nc nc lam nc turbNu Nu Nuª º= +
¬ ¼

  (A.12)

  

3. If the Grashof number is of the same order of magnitude as the square of the 
Reynolds number (0.1൏� GrL⁄ReL

2 ൏� ͳͲ), the average Nusselt number can be 
determined by asymptotically averaging the natural and forced convection Nusselt 
numbers from Eqs. (A.6) – (A.12) through the following empirical formula [11]: 

 ( ) ( )
1/333
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  (A.13) 

Once the average Nusselt number is determined, the outer convection heat transfer 
coefficient can be determined [10,11]. 

 /o fluidNu wh k= ⋅   (A.14) 

A.2.2 Convection heat transfer coefficient between skin and fabric 

Similar dimensional analysis can be used to determine the inner convection heat transfer 
coefficient. It is assumed that the fabric is impermeable and, as such, no bulk flow exists in 
the space between the fabric and the skin. For the case of two vertically-oriented parallel 
plates, the convection coefficient will again depend on the Rayleigh number. In this case, the 
characteristic length is the gap between the parallel plates (b), as opposed to the plate width 
[10,11]: 
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